Introduction
Developing AI models using LLaMA
()
1. Introduction to LLaMA
Using LLaMA online
()
Running LLaMA in a notebook
()
Accessing LLaMA in an enterprise environment
()
2. LLaMA Architecture
Differences between LLaMA 2 and 3
()
Differences between LLaMA 3 and 4
()
The LLaMA architecture
()
The LLaMA tokenizer
()
The LLaMA context window
()
Differences between LLaMA 1 and 2
()
3. Fine-Tuning LLaMA
Fine-tuning LLaMA with a few examples
()
Fine-tuning LLaMA and freezing layers
()
Fine-tuning with LLaMA using LoRa
()
Reinforcement learning with RLHF and DPO
()
Fine-tuning larger LLaMA models
()
4. Serving LLaMA
Resources required to serve LLaMA
()
Quantizing LLaMA
()
Using TGI for serving LLaMA
()
Using VLLM for serving LLaMA
()
Using DeepSpeed for serving LLaMA
()
Explaining LoRA and SLoRA
()
Using a vendor for serving LLaMA
()
5. Prompting LLaMA
Difference between LLaMA with commercial LLMs
()
Few shot learning with LLaMA
()
Chain of thought with LLaMA
()
Using schemas with LLaMA
()
Optimizing LLaMA prompts with DSPy
()
Challenge: Generating product tags
()
Solution: Generating product tags
()
Conclusion
Continue your LlaMA AI model development journey
()