Introduction
Welcome
()
What you should know
()
NumPy, data science, IMQAV
()
How to use the exercise files
()
Install software
()
1. Notebooks
Introduction to Jupyter Notebook
()
Notebook basics
()
Markdown
()
Beautiful mathematics typesetting
()
Launch Jupyter Notebook
()
2. Create NumPy Arrays
Create arrays from Python structures
()
Intrinsic creation using NumPy methods
()
linspace, zeros, ones, data types
()
3. Index, Slice, and Iterate
Slice arrays
()
Boolean mask arrays
()
Broadcasting
()
Structured and record arrays
()
4. Plots: Matplotlib and Pyplot
Inline plotting
()
Figures and subplots
()
Multiple lines, single plot
()
Tick marks, labels, and grids
()
Plot annotations
()
Pie charts and bar charts
()
Beautiful plots, the gallery
()
5. Manipulate Arrays
Views and copies
()
Array attributes
()
Add and remove elements
()
Join and split arrays
()
Array shape manipulation
()
Rearrange array elements
()
Transpose like operations
()
Tiling arrays
()
6. Short Examples
Universal functions
()
Pythagorean triangles
()
Linear algebra
()
Statistics
()
Brain teasers
()
7. Extended Examples
Magic squares and NumPy
()
Adjacency matrix
()
Magic characteristics
()
Build magic cubes
()
Ex_Files_NumPy_Data_EssT.zip
(348 KB)