Introduction
Welcome
()
What you should know
()
Mac setup
()
Windows setup
()
Linux setup
()
How to use the exercise files
()
1. Scientific Python Overview
Ramp up with Scientific Python
()
2. The Jupyter Notebook
Start the notebook server
()
Use code cells
()
Extensions to Python language
()
Understand markdown cells
()
Edit notebooks
()
3. NumPy Basics
Overview: NumPy
()
NumPy arrays
()
Slicing
()
Learn Boolean indexing
()
Understand broadcasting
()
Understand array operations
()
Understand ufuncs
()
4. Pandas
Pandas overview
()
Load CSV files
()
Parse time
()
Access rows and columns
()
Use pure Python packages
()
Calculate speed
()
Display a speed box plot
()
5. Conda
Introduction to Python packages
()
Manage environments
()
6. Folium and Geo
Create an initial map
()
Draw a track on the map
()
Use geo data with Shapely
()
Generate a report
()
7. NY Taxi Data
Examine data
()
Load data from CSV files
()
Work with categorical data
()
Work with data: Hourly trip rides
()
Work with data: Rides per hour
()
Work with data: Weather data
()
8. scikit-learn
Introduction: scikit-learn
()
Learn regression on Boston dataset
()
Understand train/test splits
()
Preprocess data
()
Compose pipelines
()
Save and load models
()
9. Plotting
Overview: matplotlib
()
Use styles
()
Customize Pandas output
()
Use matplotlib
()
Tips and tricks
()
Understand bokeh
()
10. Other Packages
Other packages overview
()
Go faster with Numba and Cython
()
Understand deep learning
()
Work with image processing
()
Understand NLP: NLTK
()
Understand NLP: SpaCy
()
Bigger data with HDF5 and dask
()
11. Development Process
Overview
()
Understand source control
()
Learn code review
()
Testing overview
()
Testing example
()
Ex_Files_Data_Science_Python.zip
(34.7 MB)