Introduction
Hands-on RAG: Build powerful AI applications
()
Using GitHub Codespaces and models
()
1. RAG Overview
Architecture of a RAG app
()
Introduction to LLM usage
()
Introduction to embedding models
()
Introduction to vector databases
()
Demo: Calling an LLM
()
Demo: Generating an embedding
()
Demo: Using a vector database
()
Challenge: Putting it all together
()
Solution: Putting it all together
()
2. Beyond the Basics
Understanding your RAG app with observability
()
Begin optimizing your data ingestion
()
Different embedding models
()
Different ways to compare vectors
()
Demo: Adding observability to RAG
()
Challenge: Altered data ingestion
()
Solution: Altered data ingestion
()
Challenge: Different embedding models
()
Solution: Different embedding models
()
Challenge: Comparing results
()
Solution: Comparing results
()
Conclusion
Market overview: Available tools
()
What's next
()