Introduction
Analyze SQL Server data with Python
()
What you should know
()
Using the exercise files
()
1. Get Started with MLS
Install ML services for Python
()
What is machine learning services?
()
Enable script execution in SQL Server
()
Use variables in Python
()
Create a Python while loop
()
2. Write Python Scripts for SQL Server
Manipulate a data frame
()
Import a dataset from SQL Server
()
Output a result set to SQL Server
()
Python syntax pitfalls
()
Challenge: Import a data frame
()
Solution: Import a data frame
()
3. Python Package Modules and Libraries
The Anaconda open-source packages
()
Functions in the revoscalepy package
()
Model, train, and score with microsoftml
()
Produce graphics with MatPlotLib
()
Get descriptive statistics with pandas
()
Challenge: Sample a data frame
()
Solution: Sample a data frame
()
4. Processing Tabular Data
Return values with indexes and series
()
Convert a series to a data frame
()
Add multiple series to a data frame
()
Include the index in a data frame
()
Slice a data frame to series
()
Challenge: Import and process data
()
Solution: Import and process data
()
5. Create a SQL Stored Procedure
Create a Python stored procedure
()
Parameterize the procedure
()
Challenge: Write a stored procedure
()
Solution: Write a stored procedure
()
6. Create an External Data Science Client
Install MLS on a standalone server
()
Add development tools to the client
()
Work with Jupyter Notebooks
()
Ex_Files_SQL_Server_Python.zip
(33 KB)