Introduction
The need for text mining skills in data science
()
Introduction to text analytics
()
Course prerequisites
()
Using Jupyter Notebook
()
1. Word Cloud
Word Cloud concepts
()
Preparing data for a word cloud
()
Displaying the word cloud
()
Enhancing the word cloud
()
2. Sentiment Analysis
Purpose
()
Preparing data for sentiment analysis
()
Finding sentiments
()
Summarization and display
()
3. Clustering
Purpose
()
Preparing data for clustering
()
k-means clustering
()
k-means optimization
()
4. Classification
Purpose
()
Preparing data for classification
()
Naïve Bayes classification
()
Predictions for text
()
5. Predictive Text
Predictive text concepts
()
Preparing data for predictive text
()
Building n-grams database
()
Recommending next word
()
Ex_Files_Text_Analytics_Predictions_Python_EssT.zip
(115 KB)